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SUMMARY

A nodally exact convection–diffusion–reaction scheme developed in Cartesian grids is applied to solve
the flow equations in irregular domains within the framework of immersed boundary (IB) method. The
artificial momentum forcing term applied at certain points in the flow and inside the body of any
shape allows the imposition of no-slip velocity condition to account for the body of complex boundary.
Development of an interpolation scheme that can accurately lead to no-slip velocity condition along the
IB is essential since Cartesian grid lines generally do not coincide with the IB. The results simulated
from the proposed IB method agree well with other numerical and experimental results for several chosen
benchmark problems. The accuracy and fidelity of the IB flow solver to predict flows with irregular IBs
are therefore demonstrated. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the major issues in flow simulations is the ability to handle complex geometries. In
many practical problems, simulation of nonlinear flow system, subjected to moving or deformable
boundaries, is computationally difficult due to the inevitable mesh regeneration at every time step.
In the past, body-fitted and immersed boundary (IB) methods have been successfully applied to
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predict this type of fluid flows in complex domains. Body-fitted method, which generates the
curvilinear structured or unstructured grids that conform to the body, proceeds to distribute surface
grids on the entire boundary. This is followed by generating the meshes in the domain occupied by
the fluid through, for example, the elliptic differential equations with the surface grid coordinates
considered as the boundary conditions. Imposition of boundary conditions in curvilinear grids that
conform to the boundary is greatly simplified and the flow solver can, at the same time, yield
adequate prediction accuracy. Grid quality of mesh generation becomes, however, a major concern.
Depending on the degree of geometrical complexity, one may resort to a multiblock approach to
generate meshes in several geometrically more simple subdomains. Moreover, an indispensable use
of coordinate transformations to map the governing equations in curvilinear coordinates involves
calculation of several metric tensors and transformation Jacobians. The complexity resulting from
the transformation of governing equations can very often deteriorate the convergence of flow
calculation due to adverse impact on the stability. As an alternative to the use of generalized
coordinate transformation, Peskin [1] developed the IB method, which enables to represent a body
of any shape within a flow field by adding a forcing term to the governing equations, without the
necessity of performing the mapping procedures. The forcing terms applied at certain nodal points
in the flow simulate the effect of the body. This allows for the modeling of a body of any shape
within the context of Cartesian grids. The developed IB method can therefore cope with the flow
complexity but at the same time the solution accuracy can be retained in the fixed grid. Therefore,
simulation of fluid flows over a moving or deformable object with complex geometry becomes
possible in Cartesian grids without the need of generating time-varying meshes.

The concept of IB method was due to the pioneering work of Peskin [1], who simulated the
blood flow in moving heart valves in the regular Eulerian fluid domain by representing the body
within a flow field by virtue of a forcing term added to the working flow equations. The IB method
can yield a singular force which can be calculated by the well-chosen discrete delta function on
each Lagrangian marker. Recently, some new types of Peskin method have been proposed. Inspired
by the work of Sirovich [2], Goldstein et al. [3] developed a virtual boundary method (feedback
forcing method) in their prediction of the two-dimensional start-up flow fields around a circular
cylinder, three-dimensional plane, and ribbed-turbulent channel. The idea of virtual boundary
method is rooted in the introduced forcing term, which is governed by a feedback loop, to account
for the solid body. The feedback forcing term added to the momentum equation allows imposition
of a no-slip boundary within the flow field but can, however, induce high-frequency spurious
oscillations, thereby considerably restricting the chosen time step and making the simulation of
flow fields in complex domains very expensive. Saiki and Biringen [4] improved the virtual
boundary method of Goldstein in their simulation of stationary and moving cylinders in a uniform
flow at low Reynolds numbers (Re�400). They could eliminate the spurious oscillations caused
by the applied feedback forcing term at the boundary by employing the area-weighted average
function for a better interpolation of the fluid velocity at the boundary points and an appropriate
distribution of nodal boundary forces at these grid points.

The IB method is featured with the source term (or function) added to the equations of motion.
The forcing function introduced for reproducing the effect of boundary could normally be imple-
mented through two major ways. The resulting fundamental dichotomy in IB methods includes
the continuous forcing approach and the discrete forcing approach. The first approach involves the
inclusion of a forcing function into the continuous governing equations prior to the discretization
of the differential equations. Since the constitutive equations can be directly incorporated into the
formulation, application of continuous forcing method can give a sound physical basis for the
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investigated flows with immersed elastic boundaries. It is therefore more suitable for the simu-
lation of biological and multiparae flows rather than for flow simulations involving rigid bodies.
Another advantage of applying the continuous forcing method is that the method can be formu-
lated independent of the employed underlying spatial discretization. On the contrary, a forcing
term is introduced after the equations being discretized for the discrete forcing approach. Hence,
it can be expected that the discrete forcing approach is not as straightforward to be implemented
as the continuous forcing approach. The forcing strategy, which is intimate in association with
the employed discretization schemes, enables a sharper representation of the IB. Depending on
the way of prescribing the boundary condition on the IB, the discrete forcing approach can be
categorized into the indirect and direct boundary condition impositions. Two types of methods,
known as the ghost-cell finite difference method and cut-cell finite element method, can fit into
the methods of direct boundary condition imposition. The reader can refer to the review paper by
Mittal and Iaccarino [5] for additional details. Since the current study investigates the flow over
the stationary rigid body, only some of the discrete forcing methods will be dealt with below.

Mohd-Yusof [6] introduced a momentum forcing term that does not affect the stability of the
discrete-time equation. The need of using a small computational time step, which is regarded as
an important advantage of this method over other previous methods, is therefore avoided. Fadlun
et al. [7] further implemented the approach of Mohd-Yusof in staggered grids and showed that the
momentum forcing suggested by Mohd-Yusof is more effective than the feedback forcing in their
three-dimensional flow simulations.

Ye et al. [8] proposed a so-called Cartesian grid method in non-staggered grids to simulate
the unsteady, incompressible Navier–Stokes equations in the physical domain with complex IB.
In their cut-cell method, it is of primary importance to satisfy the underlying conservation for
the cells in the vicinity of the IB. In the whole computational domain, a finite-volume method of
second-order accuracy is applied together with the two-step fractional-step procedure. Near the
IB, an interpolation procedure of second-order spatial accuracy is used.

This paper is organized as follows. We describe in Section 2 the working equations for the
incompressible Navier–Stokes equations cast in the primitive variable form. The IB method im-
plemented with the accurate interpolation scheme will be proposed in Section 3 for the evaluation
of momentum forcing on the body surface (IB) or inside the body. Section 4 presents the two-
dimensional convection–diffusion–reaction (CDR) scheme to obtain the Navier–Stokes solution in
non-staggered grids without producing oscillatory pressures. Section 5 verifies the proposed steady
and transient Navier–Stokes solvers. For the fidelity of the numerical model, two benchmark prob-
lems are considered. In order to verify the IB method, two classical problems will be investigated
in Section 6. In Section 7, some concluding remarks are drawn.

2. GOVERNING EQUATIONS

In this study, we will restrict our attention to the incompressible viscous flow equations, which
are governed by the following continuity and Navier–Stokes equations:

∇ · u= 0 (1)

�u
�t

+ (u · ∇)u=−∇ p + 1

Re
∇2u (2)
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Two primitive variables u, p will be sought subject to the divergence-free velocity field at t = 0 and
the prescribed boundary velocity. All lengths have been normalized by L , the velocity components
by u∞, the time by L/u∞, and the pressure by �u2∞, where � denotes the fluid density. The
Reynolds number, Re(≡ �u∞L/�), shown above is appeared as the consequence of the chosen
normalization.

Momentum conservation equations can be solved along with the divergence-free constraint
equation (continuity equation (1)) to unconditionally ensure fluid incompressibility condition.
Despite the widespread use of the coupled solution algorithm to solve the incompressible flow
equations, the distribution of eigenvalues for the resulting matrix equation may make the calculation
of incompressible flow solutions very difficult using a computationally less expensive iterative
solver [9]. Besides this disadvantage, the peripheral storage for the system of matrix equations
may exceed the available computer power and disk space. For overcoming this drawback, the
well-known pressure Poisson equation approach [10] will be applied in this study to eliminate
the pressure gradient terms from the momentum equations by performing a curl operator to the
momentum equations. The resulting Poisson equation for the pressure unknown can be derived as
follows in lieu of the divergence-free continuity equation (1):

∇2 p=∇
[
−�u

�t
+ 1

Re
∇2u − (u · ∇)u

]
(3)

In other words, the pressure values can be determined from the continuity constraint equation or
the continuity equation can be considered as an implicit equation for pressure. The above elliptic
equation will be solved subject to the Neumann-type boundary condition given by

�p
�n

=
(

−�u
�t

+ 1

Re
∇2u − (u · ∇)u

)
· n (4)

where n denotes the unit outward normal vector to the domain boundary.

3. IMMERSED BOUNDARY METHOD

Fluid flow over a body can exert a force on the no-slip surface, which will, in turn, apply a force
with the magnitude and direction opposing the local flow such that the fluid flow can be brought
to rest on the body surface [3]. In other words, introduction of a body force to the momentum
equations at certain points in the flow can simulate the effect of the investigated body. Based on
this idea, the IB method can mimic the complex body through a suitable artificial force introduced
to the momentum equations. The resulting momentum equation with the appropriately prescribed
forcing term f at certain points in the vicinity of IB can be written as

�u
�t

+ (u · ∇)u=−∇ p + 1

Re
∇2u + f (5)

As the name of the discrete-time momentum forcing method indicates, the forcing term f shown
in Equation (5) can be directly computed from the following discrete-time momentum equation:

un+1 − un

�t
+ (u · ∇)u= −∇ p + 1

Re
∇2u + f (6)
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Note that the momentum forcing f, which is applied only on the body surface or inside the body,
should be calculated at each time step. When the grid line coincides with the IB, the momentum
forcing term is specified in a way to make the velocity magnitude to be equal to V� at this point.
For the forcing point inside the body and nearest the boundary, the momentum forcing term needs
to be specified such that the normal and tangential velocity components along the boundary are
equal in magnitude but opposite in direction to the velocity components at the corresponding point
outside the body. When the boundary surface is not aligned with the grid plane, the momentum
forcing term will act only on the points nearest to the IB. An interpolation for the momentum
forcing is therefore required so that the forcing term can render a velocity that is approximately
equal to V� at the IB

f=−RHS + V� − un

�t
on � (7)

In the above, �t denotes the time increment and V� represents the specified velocity along the IB.
Note that the right-hand side (RHS) shown above is composed of the pressure gradient, convection
and diffusion terms in the momentum equations. For the case with a stationary solid body, V� = 0
will be specified along the boundary.

Imposition of nodal forces at the IBs is the key issue in developing an IB method. In general,
the forcing points are not necessary to lie on the IB but are rather present inside the body. Thus,
an interpolation procedure is required and the employed scheme for interpolating the velocity in
the solid–fluid cell determines the degree of accuracy of the employed scheme.

The interpolation procedures due to Li and Wang [11] will be described firstly. Let P shown
in Figure 1(a) be a point along the IB, at which no-slip boundary condition is prescribed. The
nearest interior point A has only one fluid-neighbor point (node B). For this case, UA and UB can
be calculated linearly from the nodal value of UD and the no-slip velocity at P

UA =−ha
hd

UD and UB = −hb
hd

UD (8)

In the above, ha , hb, hd are denoted as the distances between the points A, B, D, and P ,
respectively. In Figure 1(b), the interior point A has two fluid-neighbor points B and D. Let u be
approximated by a1 + a2x + a3y + a4xy, then uA–uP can be expressed as follows:

uA = a1 + a2xA + a3yA + a4xAyA

uB = a1 + a2xB + a3yB + a4xB yB

uC = a1 + a2xC + a3yC + a4xC yC

uD = a1 + a2xD + a3yD + a4xD yD

uP = a1 + a2xP + a3yP + a4xP yP

(9)

One can then solve the following matrix to obtain the values of a1–a4 and, in turn, uP from:⎡
⎢⎢⎢⎢⎣
1 xA yA xAyA

1 xB yB xB yB

1 xC yC xC yC

1 xD yD xD yD

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣
uA

uB

uC

uD

⎤
⎥⎥⎥⎥⎦
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Figure 1. Schematic of the interpolation schemes: (a) linear interpolation and (b) bilinear interpolation.

In most of the problems, the no-slip velocity condition at P is known and we can always use uB ,
uC , uD , and uP to calculate uA. In other words, the value of uA can be computed in a way to
satisfy the no-slip condition on the IB (point P). In order to save the CPU time, uP is derived as

uP = [(uD · �x1 + uC · �x2)�y2 + (uA · �x1 + uB · �x2)�y1]
[(�x1 + �x2)(�y1 + �y2)] (10)

where �x1 = xP − xB , �x2 = xA − xP , �y1 = yD − yP , �y2 = yP − yA are shown in Figure 2.
By setting uP = 0 in Equation (10), uA can be derived as

uA = −(uD · �x1 + uC · �x2)�y2
�y1 · �x1

− (uB · �x2)

�x1
(11)

The following five equations can then be rewritten as:

uA = a1 + a2(xP + �x2) + a3(yP − �y2) + a4(xP + �x2)(yP − �y2)

uB = a1 + a2(xP − �x1) + a3(yP − �y2) + a4(xP − �x1)(yP − �y2)

uC = a1 + a2(xP − �x1) + a3(yP + �y1) + a4(xP − �x1)(yP + �y1)

uD = a1 + a2(xP + �x2) + a3(yP + �y1) + a4(xP + �x2)(yP + �y1)

uP = a1 + a2xP + a3yP + a4xP yP

(12)

This is followed by computing the value of uP , which is equal to

a1 + a2xP + a3yP + a4xP yP = (uD · �x1 + uC · �x2)�y2 + (uA · �x1 + uB · �x2)�y1
(�x1 + �x2)(�y1 + �y2)

(13)

In the IB method, development of an interpolation scheme to accurately yield the no-slip
condition on the IB is very important because the grid lines are not necessarily aligned with the
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Figure 2. Schematic of the bilinear interpolation and the definitions of x1∼y2.

IB. Therefore, a reliable interpolation technique for evaluating the momentum forcing term on the
body surface or inside the body will be presented here. The main idea of the proposed direct forcing
method is to capture the body shape, which is normally not smooth because only one boundary
no-slip point is invoked in each solid–fluid (s–f) cell and the number of computational grids is
finite. Therefore, we are motivated to employ more boundary no-slip points to more accurately
represent the body shape.

Within the context of bilinear interpolation scheme, the corrected velocity (u∗∗) at point 2 can
be calculated from the velocities (u∗) obtained at three neighboring points 1, 3, 4 and one at the
no-slip point b. If the biquadratic interpolation scheme is considered, the number of computational
grids along one direction needs to be doubled and the boundary no-slip points are considerably
increased. For the sake of computational efficiency, we propose a ‘mimic quadratic interpolation
scheme’. In Figure 3, the solid and dotted lines represent the coarse and fine grids, respectively.
The notations 1–4 represent the grid points on the coarse grids, 5–9 are the grid points on the
fictitious fine grids. ‘©’ is the forcing point on the coarse grid, ‘◦’ denotes the impermanent mimic
forcing points on the fictitious fine grids, ‘•’ represents the no-slip point which is extended from
the forcing points normal to the IB.

The proposed quadratic interpolation scheme is to correct the velocities (u∗) at the forcing
points that are located on the fictitious fine grids in the s–f cell as the points numbering with 5, 6,
8. This is followed by using the temporarily corrected velocities (ut) at points 5, 6, 8, intermediate
velocities (u∗) at points 1, 3, 4, 7, 9, and no-slip point on the coarse grid b to interpolate the
final corrected velocity (u∗∗) at point 2. The computational procedures are as follows. The first
step is to calculate the intermediate velocity u∗. Here, this velocity is determined in the entire
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Figure 3. Schematic of the quadratic interpolation.

computational domain regardless of the position of the immersed body:

u∗ − un

�t
+ (un · ∇)un = −∇ p + 1

Re
∇2un (14)

The second step is to correct the intermediate velocity u∗ using the proposed ‘quadratic interpolation
method’. In order to satisfy the no-slip condition, the temporarily corrected velocities ut for the
forcing points on the fictitious fine mesh are expressed as

ut =

⎧⎪⎨
⎪⎩
0 on IB

f (u∗) in s–f cell

u∗ in fluid

where f (u∗) is a function of the intermediate velocities u∗ as mentioned before. Take Figure 3 as
an example, the corrected velocities ut in s–f cell are given as follows:

ut =

⎧⎪⎪⎨
⎪⎪⎩
ut5, f (u∗

3,u
∗
7, u

∗
9, ub) on point 5

ut6, f (u∗
1,u

∗
5, u

∗
7, ua) on point 6

ut8, f (u∗
4,u

∗
5, u

∗
9, uc) on point 8

With the intermediate velocities (u∗
1,u

∗
3,u

∗
4, u

∗
7, u

∗
9), the temporarily corrected velocities (ut5,u

t
6,u

t
8)

on the fictitious fine mesh, and the no-slip boundary point b, which is obtained from the original
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coarse grids, the corrected velocity at point 2 takes the following functional form:

u∗∗
2 = f (u∗

1,u
∗
3,u

∗
4, u

∗
6,u

∗
7,u

∗
9,u

t
5, u

t
6,u

t
8, ub) (15)

The third step imposes the forcing term f in s–f cells. The velocity is made to have zero magnitude
on the body surface. The presence of the prescribed forcing term implies that the updated velocity
will be computed from

u∗∗ − un

�t
+ (un · ∇)un = −∇ p + 1

Re
∇2un + f (16)

or

f=−RHS + u∗∗ − un

�t
(17)

where f= ( f1, f2). Note that RHS denotes the sum of the pressure gradient, convection, and
diffusion terms in the momentum equations. The final step is to calculate un+1. We can substitute
f obtained from step 3 into the momentum equations to calculate u at the new time step n + 1.

4. DISCRETIZATION SCHEMES

4.1. Five-point scheme for convection–diffusion–reaction equation

In view of Equation (2), the following transport equation for the field variable �(= u, v) will be
chosen to describe the proposed discretization scheme:

(u · ∇)� − k∇2� + c�= f (18)

Note that u (≡ (a, b)) in the above equation is a vector with the constant velocity components a
and b. Derivation of the discretization scheme starts with employing the following general solution
for (18) so as to suppress the convective instability and to retain the prediction accuracy

�(x, y)= A1e
�1x + A2e

�2x + A3e
�3y + A4e

�4y + f

c
(19)

In the above, A1–A4 are four arbitrary constants. By substituting the above equation into Equation
(18), we are led to derive �1–�4 in terms of a, b, k, and c as

�1,2 = a ± √
a2 + 4ck

2k
and �3,4 = b ± √

b2 + 4ck

2k
(20)

The discrete five-point stencil equation at an interior node (i, j) is assumed to take the following
form:

(
− a

2h
− m

h2
+ c

12

)
�i−1, j +

( a

2h
− m

h2
+ c

12

)
�i+1, j + 4

(
m

h2
+ 2c

12

)
�i, j

+
(

− b

2h
− m

h2
+ c

12

)
�i, j−1 +

(
b

2h
− m

h2
+ c

12

)
�i, j+1 = fi, j (21)
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Derivation is followed by substituting �i, j = A1e�1xi + A2e�2xi + A3e�3y j + A4e�4y j + f/c,

�i±1, j = A1e±�1he�1xi + A2e±�2he�2xi + A3e�3y j + A4e�4y j + f/c and �i, j±1 = A1e�1xi + A2e�2xi +
A3e±�3he�3y j + A4e±�4he�4y j + f/c into Equation (21). These substitutions enable us to derive
the undetermined coefficient m as

m =
[
ah

2
sinh �1 cosh �2 + bh

2
sinh �3 cosh �4 + ch2

12
(cosh �1 cosh �2

+ cosh �3 cosh �4 + 10)

]/
(cosh �1 cosh �2 + cosh �3 cosh �4 − 2) (22)

where

(�1, �2) =
⎛
⎝ah

2k
,

√(
ah

2k

)2

+ ch2

k

⎞
⎠ and (�3, �4) =

⎛
⎝bh

2k
,

√(
bh

2k

)2

+ ch2

k

⎞
⎠

For the unsteady case, the model CDR equation takes the following form:

�t + (u · ∇)� − k∇2� + c�= f (23)

We apply the semi-discretization scheme to approximate Equation (23), where the employed Euler
time-stepping scheme given by �t = (�n+1 − �n)/�t yields the first-order accuracy. The resulting
equation containing only the spatial derivatives is as follows:

u�n+1
x + v�n+1

y − k∇2�n+1 + c�n+1 = f (24)

The definitions of u, v, k, and c are given by u = u�t , v = v�t , k = k�t , c= 1 + c�t , and
f = f n+1�t + �n .

4.2. Compact scheme for pressure gradient term in collocated grids

Staggered grid approaches employed to solve the incompressible flow equations have long been
known to be effective to suppress pressure oscillations arising from the even–odd coupling. This
type of approaches can, however, increase the programming complexity. Discretization of differ-
ential equations in a domain where the velocities and pressure are stored at the same point will be
employed in this study. The pressure gradient term ∇ p in the momentum equations must be care-
fully approximated in the non-staggered mesh system to avoid the spurious pressure oscillations.
Our underlying idea of eliminating the notorious even–odd decoupling solutions is to employ pi, j
when approximating ∇ p at an interior node (i, j). Instead of explicitly approximating �p/�x |i, j ,
its value can be calculated implicitly with �p/�x |i±1, j . Define Fi, j as Fi, j = h�p/�x |i, j , where h
denotes the uniform mesh size. The scheme employed to calculate the nodal values of F is based
on the following implicit equation [12, 13]:

�1Fi+1, j + �1Fi, j + �1Fi−1, j = a1(pi+2, j − pi+1, j ) + a2(pi+1, j − pi, j )

+ a3(pi, j − pi−1, j ) + a4(pi−1, j − pi−2, j ) (25)
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The seven coefficients shown above can be obtained by expanding Fi±1, j in Taylor series with
respect to Fi, j , and pi±1, j and pi±2, j with respect to pi, j . This is followed by substituting the
resulting expansion equations into Equation (25), employing the definition for Fi, j to derive a
set of algebraic equations, and setting �1 = �1 due to the elliptic nature of the pressure field. The
coefficients can then be determined as �1 = 1

5 , �1 = 3
5 , a1 = 1

60 , a2 = 29
60 , a3 = 29

60 , and a4 = 1
60 . The

equation for Fi, j at a nodal point located immediately adjacent to the right boundary point is
derived from Equation (25) under �1 = a1 = a2 = 0.

Throughout this study, the second-order derivative terms for the velocities are approximated
by the compact scheme [12, 13]. Calculation of �xx |i, j , for example, is started by assuming
�xx |i, j = Si, j/h2. The value of Si, j is then implicitly computed from

h2(�3Si+1, j + �3Si, j + �3Si−1, j ) = c1�i+2, j + c2�i+1, j + c3�i, j + c4�i−1, j + c4�i−2, j (26)

Expanding Si±1, j with respect to Si, j and �i±1, j , �i±2, j with respect to �i, j in Taylor series and
then substituting them into the expression for Si, j . The values for (�3, �3, �3, c1, c2, c3, c4, c5)
can be obtained from the eight algebraic equations as (1, 11

2 , 1,
3
8 , 6, − 51

4 , 6,
3
8 ).

Since the proposed CDR scheme will break down at ui = 0 and c3 = 0. Discretization of Equation
(3) should be treated differently. One way of accurately approximating pxx and pyy is to employ
Equation (26) at the conditions of �3 = �3 = 0. The rest of the free parameters will be determined
using the same method described earlier. The resulting discrete equation for ∇2 p at an interior
point (i, j) is given by

∇2 p|i, j = (pi+1, j+1 + pi−1, j+1 + pi+1, j−1 + pi−1, j−1) − 20pi, j

+ 4(pi+1, j + pi−1, j + pi, j+1 + pi, j−1) (27)

The quality of the approximation scheme for Equation (4) depends highly on the first derivative
terms shown in the RHS. Depending on the sign of u, the value of ux at the left boundary is
obtained by setting �3 = �3 = 0 in Equation (26). The remaining coefficients are determined as
�3 = 1, c1 = − 1

12 , c2 = 4
3 , c3 =− 5

2 , c4 = 4
3 , and c5 =− 1

12 .

5. VERIFICATION OF THE NAVIER–STOKES SOLVER

To verify the proposed Navier–Stokes solver, two benchmark problems are chosen in this study.

5.1. Lid-driven cavity flow problem

The flow field driven by a constant upper lid velocity ulid will be investigated in the square cavity
at Re= 3200 and 5000. Note that L(= 1) is chosen as the characteristic length, and ulid(= 1) is the
characteristic velocity. The simulated grid-independent mid-plane velocity profiles u(0.5, y) and
v(x, 0.5) at two mid-planes are plotted in Figure 4. Good agreement with the benchmark solutions
of Ghia et al. [14] (�) and Erturk et al. [15] (©) confirms the fidelity of the proposed scheme.

5.2. Backward-facing step flow problem

The next problem deals with the incompressible laminar channel flow over a backward-facing step
of height h. The downstream channel height H(= 1) is equal to 2h. The downstream channel
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Figure 4. Comparison of the simulated velocity profiles for u(x, 0.5) and
v(0.5, y): (a) Re= 3200 and (b) Re= 5000.

x3

xu= 5

x2

(0,0)
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H=1

xd=20

u=24(1-y)(y-0.5)

h=0.5

x1

Figure 5. Schematic of the recirculation eddies in the backward-facing step
problem considered in Section 5.2.

length is chosen to be xd = 40h, which can yield a traction-free force at the exit [16]. No-
slip boundary condition is imposed at the upper and lower boundaries. At the inlet, imposition
of u(0.5�y�1) = 24(1 − y)(y − 0.5) yields the maximum inflow velocity umax = 1.5 and an
average inflow velocity uavg = 1. Denoting x1 shown in Figure 5 as the reattachment length of the
recirculation eddy behind the step. We also define x2 and x3 as the separation and reattachment
locations of the upper eddy, respectively. The Reynolds number for this investigated problem is
defined by the step height h and the average inlet velocity uavg. The predicted lengths of x1∼x3
at Re= 100, 200, 400, 600, and 800 are tabulated in Table I, where a grid spacing of 1

40 was used
in each calculation. The simulated solution at Re= 800 shows good agreement with the results of
Gartling [17] and Keskar and Lyn [18] in Figure 6 for u at x = 7 and 15.
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Table I. The reattachment and separation locations predicted at different Reynolds numbers. Note that
‘no inlet channel’ represents the removal of the flow domain defined in −2�x�0 and 1�y�0.5. As for

the case ‘with inlet channel’, the flow domain under investigation is the one shown in Figure 5.

Re

100 200 400 600 800

x1 Parabolic inlet, no inlet channel 1.5858 2.5906 4.2717 5.3182 6.1405
Parabolic inlet, with inlet channel 1.4060 2.4971 4.2143 5.2526 5.9950

x2 Parabolic inlet, no inlet channel — — — 4.2321 4.8054
Parabolic inlet, with inlet channel — — — 4.1097 4.6677

x3 Parabolic inlet, no inlet channel — — — 7.8160 10.2202
Parabolic inlet, with inlet channel — — — 7.8903 10.3569
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Figure 6. Comparison of the predicted u velocity profiles at x = 7 and 15 with the results given in [17, 18]
for the case carried out at Re= 800.

6. NUMERICAL RESULTS

6.1. Flow over a circular cylinder

Flow over a circular cylinder has been extensively studied for verifying the IB solvers. At smaller
values of Re, the flow is of the diffusion dominated type and is called the creeping flow. At a
somewhat higher value of Re (up to Re= 40), two symmetrical vortices will be stationarily attached
behind the cylinder. When increasing the value of Re, the vortices become stretched and the flow
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Figure 7. The predicted u, v, p contours near the wake of the circular cylinder at T = 200 for the case
considered at Re= 40 ((a), (c), (e)) and Re= 80 ((b), (d), (f)).

will be distorted and broken apart, leading to an alternating vortex shedding (or Kármán vortex
street) wake.

In this study, the drag and lift coefficients, and the Strouhal number will be calculated for the sake
of comparison with other numerical methods. Drag coefficient is defined as CD = FD/( 12u

2∞D),
where FD(≡− ∫

� f1(x) dx=− ∑
x f1(x)h2) is the drag force. In the above, f1(x) is the x-

component of the forcing term, and h is the uniform mesh size. Lift coefficient is computed
from CL = FL/( 12u

2∞D), where FL(≡− ∫
� f2(x) dx= − ∑

x f2(x)h2) is the lift force. Note that
f2(x) is the y-component of the forcing term. When the flow becomes unstable, the stationary
vortices behind the cylinder will be evolved to develop the shedding frequency fq . The dimension-
less vortex shedding frequency is called the Strouhal number and is defined as St = fq/(u∞D).
Denote the dimensionless time period as Tp, St can be measured by St = 1/(u∞TpD).
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Figure 8. The predicted instantaneous streamlines and vorticity contours in the near wake of the circular
cylinder at T = 200 for Re= 40 ((a) and (b)) and Re= 80 ((c) and (d)).

In a rectangular domain, the flow over a stationary cylinder will be simulated in a domain of
Cartesian meshes. A constant velocity profile u∞ = 1 was specified at the inlet and the Neumann
boundary condition was prescribed along the lateral boundaries. A circular cylinder of diameter
D = 1 was placed inside the flow domain (0�x�30D, 0�y�15D) with its center located at
x = 7.5D and y = 7.5D. According to the grid refinement study of Lima E Silva et al. [19], the mesh
with the nodal points of 301× 151 is chosen, respectively, in the streamwise (x) and transverse (y)
directions. Our simulations were performed at two Reynolds numbers (Re= (�u∞D)/�= 40, 80),
where the characteristic length and velocity are the diameter of the cylinder (D) and the constant
velocity at the inlet (u∞), respectively. The dimensionless time was defined as T = (u∞t)/D.

For the case with Re= 40, the wake predicted behind the cylinder was seen to reach a steady
symmetric state. This predicted result is in good agreement with the well-established result, which
was obtained by the linear stability theory. The cylinder wake instabilities can be observed as
Re�47. This is indeed what we predict from the simulation carried out at Re= 80. In order to
confirm this phenomenon, the (u, p) contours were plotted in the near wake of the circular cylinder
at T = 200 in Figure 7. Figure 8 shows the streamline vector and the corresponding vorticity fields
at T = 200 for Re= 40 and 80, respectively.

Figure 9 shows the time evolution of the drag and the lift coefficients at Re= 40 and 80, respec-
tively. Figure 10 shows the power spectrum of CL at Re= 80. The Strouhal number corresponding
to the dominant frequency of lift variation is predicted approximately to be 0.15. The length of
the bubble recirculation (Lw) schematic in Figure 11 is defined as the distance between the two
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Figure 9. The simulated time-evolving drag and lift coefficients for the
flow over a cylinder: (a) Re= 40 and (b) Re= 80.
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Figure 10. The predicted power spectrum of the lift coefficient (CL) for the flow over a cylinder at Re= 80.

stagnation points located downstream of the cylinder. Figure 12 shows these distributions against
coordinate x predicted by different IB methods [19, 20] at Re= 40.

Comparison of the drag coefficient, length of eddy recirculation, and Strouhal number with
other established results obtained at Re= 40 and 80 is presented in Table II (including references
[8, 19, 21–29]). In this table, the drag coefficients calculated by the Cartesian grid methods were
found to have slightly larger values than those obtained from the body-fitted methods. The predicted
volume of fluid (VOF) results are noted to be comparatively different from others. The results
obtained from the direct forcing method and the currently proposed method are close to the
formerly cited results.
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Table II. Comparison of the predicted drag coefficient, length of the bubble recirculation, and Strouhal
number (frequency) with some other results carried out at Re= 40 and 80.

Re= 40 Re= 80

Study Year CD Lw CD St

Tritton [21]∗ 1959 1.48 — 1.29 —
Dennis and Chang [22]† 1970 1.52 2.35 — —
Fornberg [23]† 1980 1.50 2.24 — —
Williamson [24, 25]∗ 1989, 1996 — — — 0.15
Park et al. [26]† 1998 1.51 — 1.35 —
Ye et al. [8]‡ 1999 1.52 2.27 1.37 0.15
Calhoun [27]‡ 2002 1.62 2.18 — —
Lima E Silva et al. [19]‡ 2003 1.54 — 1.40 0.15
Russell and Wang [28]‡ 2003 1.60 2.29 — —
Ding et al. [29]§ 2004 1.71 2.20 — —
This study (VOF)‡ 2005 1.78 2.55 1.44 0.15
This study (direct forcing—bilinear)‡ 2005 1.59 2.34 1.39 0.15
This study (direct forcing—mimic quad)‡ 2005 1.57 2.36 1.37 0.15

∗The experimental data.
†The numerical data calculated from the body-fitted grid method.
‡The numerical data calculated from the Cartesian grid method.
§The numerical data calculated from the meshless method.

Figure 13. The computational domain and boundary condition for the flow over two cylinders in tandem.

6.2. Flow over two cylinders in tandem

Flow over two cylinders in tandem was simulated in the Cartesian mesh. The distance between the
two cylinder surfaces is denoted by the dimensionless value g∗ =G/D, where G is the minimum
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Table III. Comparison of the average drag coefficient, Strouhal number for
the cylinders in tandem at g∗ = 4.0, Re= 200.

Study CD1 CD2 St1 St2

Farrant et al. [31] 1.25 0.38 0.179 0.179
Meneghini et al. [32] 1.18 0.38 0.174 0.174
This study (direct forcing—mimic quad) 1.31 0.39 0.171 0.171

Index 1 refers to the upstream circular cylinder, and index 2 indicates the
downstream circular cylinder.
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Figure 14. The time evolution of the drag and lift coefficients for the case considered in Section 6.2:
(a)–(c) drag coefficient and (b)–(d) lift coefficient.

distance between the cylinder surfaces and D is the cylinder diameter. It has been known from the
experimental result of Zdravkovich [30] that when the cylinder spacing g∗ becomes larger than 3.8,
the upstream cylinder will be shed in synchronization with the downstream one. To demonstrate
that the current method has the ability to predict the flows in complex geometries, a calculation
was performed for the flow over two cylinders in tandem at Re= 200 and g∗ = 4.0.

A constant velocity u∞ = 1 was specified at the inlet and a Neumann boundary condition was
prescribed along the lateral boundaries. Two circular cylinders of diameter D = 1 were placed
inside the domain with their centers located at (x, y) = (5.5D, 7.5D) and (10.5D, 7.5D). The
simulations have been carried out in a computational domain (0�x�35D, 0�y�15D), schematic
in Figure 13, that is sufficiently apart from two cylinders to minimize the boundary effect on the
flow development. The grid points are chosen to be 351× 151 in the streamwise (x) and transverse
(y) directions, respectively.
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Figure 15. The predicted power spectra of the lift coefficient (CL) for the flow over two cylinders in
tandem: (a) upstream cylinder 1 and (b) downstream cylinder 2.
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Figure 16. The predicted instantaneous pressure and vorticity contours in the near wake of the circular
cylinder at T = 100 for Re= 200: (a) pressure contours and (b) vorticity contours.

For the investigated cylinders in tandem, the computation was performed at Re= 200 and
g∗ = 4.0, which were performed by Farrant et al. [31] and Meneghini et al. [32]. Comparison
of the predicted time-averaged drag coefficient and Strouhal number with the established results
is given in Table III. Good agreement with other non-Cartesian numerical simulations confirms
that the proposed method implemented in Cartesian grids can be applied to predict the flows in
complex geometries.

The drag and lift coefficients against time for both cylinders are plotted in Figure 14, where
index 1 refers to the upstream circular, and index 2 represents the downstream circular cylinder. The
power spectra of the lift coefficient (CL) and the Strouhal number for both cylinders corresponding
to the dominant frequency of the lift variation with the same value (that is, 0.171) are shown in
Figure 15. The identical Strouhal numbers confirm that the shedding is synchronized and their
values are in agreement with the experimental data. In order to reveal the behavior of the cylinders in
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tandem, the streamline vector, vorticity contours and the corresponding pressure field and vorticity
at T = 100 are also plotted in Figure 16.

7. CONCLUDING REMARKS

In this study, an IB method is proposed for the simulation of time-dependent (unsteady), incom-
pressible viscous flows over circular cylinder and two cylinders in tandem in Cartesian grids. For
the sake of more accurately capturing the shape of the immersed body in the flow, more points at
which the momentum forcing terms are added to the momentum equations are involved to simulate
the effect of the body in the flow. The drag and lift coefficients, the Strouhal number, the length
of bubble recirculation, and the centerline velocities downstream of the cylinder were predicted
at two Reynolds numbers (Re= 40, 80). The results compare favorably with the experimental and
other numerical results.

ACKNOWLEDGEMENTS

The financial support provided by the National Science Council under grant NSC95-2221-E-002-418 and
NSC95-2745-P-002-004 is gratefully acknowledged.

REFERENCES

1. Peskin CS. Flow patterns around heart valves: a numerical method. Journal of Computational Physics 1972;
10:252–271.

2. Sirovich L. Initial, boundary value problems in dissipative gas dynamics. Physics of Fluids 1967; 10:24–34.
3. Goldstein D, Haandler R, Sirovich L. Modeling a no-slip flow boundary with an external force field. Journal of

Computational Physics 1993; 105:354–336.
4. Saiki EM, Biringen S. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary

method. Journal of Computational Physics 1996; 123:450–465.
5. Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics 2005; 37:239–261.
6. Mohd-Yusof J. Combined immersed boundary/B-spline method for simulations of flows in complex geometries.

CTR Annual Research Briefs, NASA Ames/Stanford University, 1997; 317–327.
7. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J. Combined immersed-boundary methods for three dimensional

complex flow simulations. Journal of Computational Physics 2000; 161:30–60.
8. Ye T, Mittal R, Udaykumar HS, Shyy W. An accurate Cartesian grid method for viscous incompressible flows

with complex immersed boundaries. Journal of Computational Physics 1999; 156:209–240.
9. Wang MMT, Sheu TWH. An element-by-element BICGSTAB iterative method for three-dimensional steady

Navier–Stokes equations. Journal of Computational and Applied Mathematics 1997; 79:147–165.
10. Gresho PM, Sani RL. On pressure boundary conditions for the incompressible Navier–Stokes equations.

International Journal for Numerical Methods in Fluids 1987; 7:1111–1145.
11. Li CW, Wang LL. An immersed boundary finite difference method for LES of flow around bluff shapes.

International Journal for Numerical Methods in Fluids 2004; 46:85–107.
12. Sheu TWH, Lin RK. Newton linearization on the incompressible Navier–Stokes equations. International Journal

for Numerical Methods in Fluids 2004; 44:297–312.
13. Sheu TWH, Lin RK. An incompressible Navier–Stokes model implemented on non-staggered grids. Numerical

Heat Transfer, Part B: Fundamentals 2003; 44:277–294.
14. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier–Stokes equations and

a multigrid method. Journal of Computational Physics 1982; 48:387–411.
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